skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spears, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cycling, as a green transportation mode, provides an environmentally friendly transportation choice for short-distance traveling. However, cyclists are also getting involved in fatal accidents more frequently in recent years. Thus, understanding and modeling their road behaviors is crucial in helping improving road safety laws and infrastructures. Traditionally, people understand road user behavior using either purely spatial trajectory data, or videos from fixed surveillance camera through tracking or predicting their paths. However, these data only cover limited areas and do not provide information from the cyclist's field of view. In this paper, we take advantage of geo-referenced egocentric video data collected from the handlebar cameras of cyclists to learn how to predict their behaviors. This approach is technically more challenging, because both the observer and objects in the scene might be moving, and there are strong temporal dependencies in both the behaviors of cyclists and the video scenes. We propose Cycling-Net, a novel deep learning model that tracks different types of objects in consecutive scenes and learns the relationship between the movement of these objects and the behavior of the cyclist. Experiment results on a naturalistic trip dataset show the Cycling-Net is effective in behavior prediction and outperforms a baseline model. 
    more » « less